Files
bft-crdt-experiment/crates/bft-json-crdt/src/json_crdt.rs
2024-06-18 11:24:21 +01:00

887 lines
28 KiB
Rust

use std::{
collections::{HashMap, HashSet},
fmt::Display,
};
use crate::{
debug::{debug_op_on_primitive, DebugView},
keypair::{sha256, sign, AuthorId, SignedDigest},
list_crdt::ListCrdt,
lww_crdt::LwwRegisterCrdt,
op::{print_hex, print_path, Hashable, Op, OpId, PathSegment},
};
pub use bft_crdt_derive::*;
use fastcrypto::traits::VerifyingKey;
use fastcrypto::{
ed25519::{Ed25519KeyPair, Ed25519PublicKey, Ed25519Signature},
traits::{KeyPair, ToFromBytes},
// Verifier,
};
// TODO: serde's json object serialization and deserialization (correctly) do not define anything
// object field order in JSON objects. However, the hash check impl in bft-json-crdt does take order
// into account. This is going to cause problems later for non-Rust implementations, BFT hash checking
// currently depends on JSON serialization/deserialization object order. This shouldn't be the case
// but I've hacked it for the moment to get the PoC working. To see the problem, replace this with
// a std HashMap, everything will screw up (annoyingly, only *most* of the time).
use indexmap::IndexMap;
use serde::{Deserialize, Serialize};
use serde_with::{serde_as, Bytes};
/// Anything that can be nested in a JSON CRDT
pub trait CrdtNode: CrdtNodeFromValue + Hashable + Clone {
/// Create a new CRDT of this type
fn new(id: AuthorId, path: Vec<PathSegment>) -> Self;
/// Apply an operation to this CRDT, forwarding if necessary
fn apply(&mut self, op: Op<JsonValue>) -> OpState;
/// Get a JSON representation of the value in this node
fn view(&self) -> JsonValue;
}
/// Enum representing possible outcomes of applying an operation to a CRDT
#[derive(Debug, PartialEq)]
pub enum OpState {
/// Operation applied successfully
Ok,
/// Tried to apply an operation to a non-CRDT primitive (i.e. f64, bool, etc.)
/// If you would like a mutable primitive, wrap it in a [`LWWRegisterCRDT`]
ErrApplyOnPrimitive,
/// Tried to apply an operation to a static struct CRDT
/// If you would like a mutable object, use a [`Value`]
ErrApplyOnStruct,
/// Tried to apply an operation that contains content of the wrong type.
/// In other words, the content cannot be coerced to the CRDT at the path specified.
ErrMismatchedType,
/// The signed digest of the message did not match the claimed author of the message.
/// This can happen if the message was tampered with during delivery
ErrDigestMismatch,
/// The hash of the message did not match the contents of the message.
/// This can happen if the author tried to perform an equivocation attack by creating an
/// operation and modifying it has already been created
ErrHashMismatch,
/// Tried to apply an operation to a non-existent path. The author may have forgotten to attach
/// a causal dependency
ErrPathMismatch,
/// Trying to modify/delete the sentinel (zero-th) node element that is used for book-keeping
ErrListApplyToEmpty,
/// We have not received all of the causal dependencies of this operation. It has been queued
/// up and will be executed when its causal dependencies have been delivered
MissingCausalDependencies,
}
/// The following types can be used as a 'terminal' type in CRDTs
pub trait MarkPrimitive: Into<JsonValue> + Default {}
impl MarkPrimitive for bool {}
impl MarkPrimitive for i32 {}
impl MarkPrimitive for i64 {}
impl MarkPrimitive for f64 {}
impl MarkPrimitive for char {}
impl MarkPrimitive for String {}
impl MarkPrimitive for JsonValue {}
/// Implement CrdtNode for non-CRDTs
/// This is a stub implementation so most functions don't do anything/log an error
impl<T> CrdtNode for T
where
T: CrdtNodeFromValue + MarkPrimitive + Hashable + Clone,
{
fn apply(&mut self, _op: Op<JsonValue>) -> OpState {
OpState::ErrApplyOnPrimitive
}
fn view(&self) -> JsonValue {
self.to_owned().into()
}
fn new(_id: AuthorId, _path: Vec<PathSegment>) -> Self {
debug_op_on_primitive(_path);
Default::default()
}
}
/// The base struct for a JSON CRDT. Allows for declaring causal
/// dependencies across fields. It only accepts messages of [`SignedOp`] for BFT.
pub struct BaseCrdt<T: CrdtNode> {
/// Public key of this CRDT
pub id: AuthorId,
/// Internal base CRDT
pub doc: T,
/// In a real world scenario, this would be a proper hash graph that allows for
/// efficient reconciliation of missing dependencies. We naively keep a hash set
/// of messages we've seen (represented by their [`SignedDigest`]).
received: HashSet<SignedDigest>,
message_q: HashMap<SignedDigest, Vec<SignedOp>>,
}
/// An [`Op<Value>`] with a few bits of extra metadata
#[serde_as]
#[derive(Clone, Serialize, Deserialize, Debug, PartialEq)]
pub struct SignedOp {
// Note that this can be different from the author of the inner op as the inner op could have been created
// by a different person
author: AuthorId,
/// Signed hash using priv key of author. Effectively [`OpID`] Use this as the ID to figure out what has been delivered already
#[serde_as(as = "Bytes")]
pub signed_digest: SignedDigest,
pub inner: Op<JsonValue>,
/// List of causal dependencies
#[serde_as(as = "Vec<Bytes>")]
pub depends_on: Vec<SignedDigest>,
}
impl SignedOp {
pub fn id(&self) -> OpId {
self.inner.id
}
pub fn author(&self) -> AuthorId {
self.author
}
/// Creates a digest of the following fields. Any changes in the fields will change the signed digest
/// - id (hash of the following)
/// - origin
/// - author
/// - seq
/// - is_deleted
/// - path
/// - dependencies
fn digest(&self) -> [u8; 32] {
let path_string = print_path(self.inner.path.clone());
let dependency_string = self
.depends_on
.iter()
.map(print_hex)
.collect::<Vec<_>>()
.join("");
let fmt_str = format!("{:?},{path_string},{dependency_string}", self.id());
sha256(fmt_str)
}
/// Sign this digest with the given keypair. Shouldn't need to be called manually,
/// just use [`SignedOp::from_op`] instead
fn sign_digest(&mut self, keypair: &Ed25519KeyPair) {
self.signed_digest = sign(keypair, &self.digest()).sig.to_bytes()
}
/// Ensure digest was actually signed by the author it claims to be signed by
pub fn is_valid_digest(&self) -> bool {
let digest = Ed25519Signature::from_bytes(&self.signed_digest);
let pubkey = Ed25519PublicKey::from_bytes(&self.author());
match (digest, pubkey) {
(Ok(digest), Ok(pubkey)) => pubkey.verify(&self.digest(), &digest).is_ok(),
(_, _) => false,
}
}
/// Sign a normal op and add all the needed metadata
pub fn from_op<T: CrdtNode>(
value: Op<T>,
keypair: &Ed25519KeyPair,
depends_on: Vec<SignedDigest>,
) -> Self {
let author = keypair.public().0.to_bytes();
let mut new = Self {
inner: Op {
content: value.content.map(|c| c.view()),
origin: value.origin,
author: value.author,
seq: value.seq,
path: value.path,
is_deleted: value.is_deleted,
id: value.id,
},
author,
signed_digest: [0u8; 64],
depends_on,
};
new.sign_digest(keypair);
new
}
}
impl<T: CrdtNode + DebugView> BaseCrdt<T> {
/// Create a new BaseCRDT of the given type. Multiple BaseCRDTs
/// can be created from a single keypair but you are responsible for
/// routing messages to the right BaseCRDT. Usually you should just make a single
/// struct that contains all the state you need.
pub fn new(keypair: &Ed25519KeyPair) -> Self {
let id = keypair.public().0.to_bytes();
Self {
id,
doc: T::new(id, vec![]),
received: HashSet::new(),
message_q: HashMap::new(),
}
}
/// Apply a signed operation to this BaseCRDT, verifying integrity and routing to the right
/// nested CRDT
pub fn apply(&mut self, op: SignedOp) -> OpState {
// self.log_try_apply(&op);
#[cfg(feature = "bft")]
if !op.is_valid_digest() {
self.debug_digest_failure(op);
return OpState::ErrDigestMismatch;
}
let op_id = op.signed_digest;
if !op.depends_on.is_empty() {
for origin in &op.depends_on {
if !self.received.contains(origin) {
self.log_missing_causal_dep(origin);
self.message_q.entry(*origin).or_default().push(op);
return OpState::MissingCausalDependencies;
}
}
}
// apply
// self.log_actually_apply(&op);
let status = self.doc.apply(op.inner);
// self.debug_view();
self.received.insert(op_id);
// apply all of its causal dependents if there are any
let dependent_queue = self.message_q.remove(&op_id);
if let Some(mut q) = dependent_queue {
for dependent in q.drain(..) {
self.apply(dependent);
}
}
status
}
}
/// An enum representing a JSON value
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
pub enum JsonValue {
Null,
Bool(bool),
Number(f64),
String(String),
Array(Vec<JsonValue>),
Object(IndexMap<String, JsonValue>),
}
impl Display for JsonValue {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(
f,
"{}",
match self {
JsonValue::Null => "null".to_string(),
JsonValue::Bool(b) => b.to_string(),
JsonValue::Number(n) => n.to_string(),
JsonValue::String(s) => format!("\"{s}\""),
JsonValue::Array(arr) => {
if arr.len() > 1 {
format!(
"[\n{}\n]",
arr.iter()
.map(|x| format!(" {x}"))
.collect::<Vec<_>>()
.join(",\n")
)
} else {
format!(
"[ {} ]",
arr.iter()
.map(|x| x.to_string())
.collect::<Vec<_>>()
.join(", ")
)
}
}
JsonValue::Object(obj) => format!(
"{{ {} }}",
obj.iter()
.map(|(k, v)| format!(" \"{k}\": {v}"))
.collect::<Vec<_>>()
.join(",\n")
),
}
)
}
}
impl Default for JsonValue {
fn default() -> Self {
Self::Null
}
}
/// Allow easy conversion to and from serde's JSON format. This allows us to use the [`json!`]
/// macro
impl From<JsonValue> for serde_json::Value {
fn from(value: JsonValue) -> Self {
match value {
JsonValue::Null => serde_json::Value::Null,
JsonValue::Bool(x) => serde_json::Value::Bool(x),
JsonValue::Number(x) => {
serde_json::Value::Number(serde_json::Number::from_f64(x).unwrap())
}
JsonValue::String(x) => serde_json::Value::String(x),
JsonValue::Array(x) => {
serde_json::Value::Array(x.iter().map(|a| a.clone().into()).collect())
}
JsonValue::Object(x) => serde_json::Value::Object(
x.iter()
.map(|(k, v)| (k.clone(), v.clone().into()))
.collect(),
),
}
}
}
impl From<serde_json::Value> for JsonValue {
fn from(value: serde_json::Value) -> Self {
match value {
serde_json::Value::Null => JsonValue::Null,
serde_json::Value::Bool(x) => JsonValue::Bool(x),
serde_json::Value::Number(x) => JsonValue::Number(x.as_f64().unwrap()),
serde_json::Value::String(x) => JsonValue::String(x),
serde_json::Value::Array(x) => {
JsonValue::Array(x.iter().map(|a| a.clone().into()).collect())
}
serde_json::Value::Object(x) => JsonValue::Object(
x.iter()
.map(|(k, v)| (k.clone(), v.clone().into()))
.collect(),
),
}
}
}
impl JsonValue {
pub fn into_json(self) -> serde_json::Value {
self.into()
}
}
/// Conversions from primitive types to [`JsonValue`]
impl From<bool> for JsonValue {
fn from(val: bool) -> Self {
JsonValue::Bool(val)
}
}
impl From<i64> for JsonValue {
fn from(val: i64) -> Self {
JsonValue::Number(val as f64)
}
}
impl From<i32> for JsonValue {
fn from(val: i32) -> Self {
JsonValue::Number(val as f64)
}
}
impl From<f64> for JsonValue {
fn from(val: f64) -> Self {
JsonValue::Number(val)
}
}
impl From<String> for JsonValue {
fn from(val: String) -> Self {
JsonValue::String(val)
}
}
impl From<char> for JsonValue {
fn from(val: char) -> Self {
JsonValue::String(val.into())
}
}
impl<T> From<Option<T>> for JsonValue
where
T: CrdtNode,
{
fn from(val: Option<T>) -> Self {
match val {
Some(x) => x.view(),
None => JsonValue::Null,
}
}
}
impl<T> From<Vec<T>> for JsonValue
where
T: CrdtNode,
{
fn from(value: Vec<T>) -> Self {
JsonValue::Array(value.iter().map(|x| x.view()).collect())
}
}
/// Fallibly create a CRDT Node from a JSON Value
pub trait CrdtNodeFromValue: Sized {
fn node_from(value: JsonValue, id: AuthorId, path: Vec<PathSegment>) -> Result<Self, String>;
}
/// Fallibly cast a JSON Value into a CRDT Node
pub trait IntoCrdtNode<T>: Sized {
fn into_node(self, id: AuthorId, path: Vec<PathSegment>) -> Result<T, String>;
}
/// [`CrdtNodeFromValue`] implies [`IntoCrdtNode<T>`]
impl<T> IntoCrdtNode<T> for JsonValue
where
T: CrdtNodeFromValue,
{
fn into_node(self, id: AuthorId, path: Vec<PathSegment>) -> Result<T, String> {
T::node_from(self, id, path)
}
}
/// Trivial conversion from [`JsonValue`] to [`JsonValue`] as [`CrdtNodeFromValue`]
impl CrdtNodeFromValue for JsonValue {
fn node_from(value: JsonValue, _id: AuthorId, _path: Vec<PathSegment>) -> Result<Self, String> {
Ok(value)
}
}
/// Conversions from bool to CRDT
impl CrdtNodeFromValue for bool {
fn node_from(value: JsonValue, _id: AuthorId, _path: Vec<PathSegment>) -> Result<Self, String> {
if let JsonValue::Bool(x) = value {
Ok(x)
} else {
Err(format!("failed to convert {value:?} -> bool"))
}
}
}
/// Conversions from f64 to CRDT
impl CrdtNodeFromValue for f64 {
fn node_from(value: JsonValue, _id: AuthorId, _path: Vec<PathSegment>) -> Result<Self, String> {
if let JsonValue::Number(x) = value {
Ok(x)
} else {
Err(format!("failed to convert {value:?} -> f64"))
}
}
}
/// Conversions from i64 to CRDT
impl CrdtNodeFromValue for i64 {
fn node_from(value: JsonValue, _id: AuthorId, _path: Vec<PathSegment>) -> Result<Self, String> {
if let JsonValue::Number(x) = value {
Ok(x as i64)
} else {
Err(format!("failed to convert {value:?} -> f64"))
}
}
}
/// Conversions from String to CRDT
impl CrdtNodeFromValue for String {
fn node_from(value: JsonValue, _id: AuthorId, _path: Vec<PathSegment>) -> Result<Self, String> {
if let JsonValue::String(x) = value {
Ok(x)
} else {
Err(format!("failed to convert {value:?} -> String"))
}
}
}
/// Conversions from char to CRDT
impl CrdtNodeFromValue for char {
fn node_from(value: JsonValue, _id: AuthorId, _path: Vec<PathSegment>) -> Result<Self, String> {
if let JsonValue::String(x) = value.clone() {
x.chars().next().ok_or(format!(
"failed to convert {value:?} -> char: found a zero-length string"
))
} else {
Err(format!("failed to convert {value:?} -> char"))
}
}
}
impl<T> CrdtNodeFromValue for LwwRegisterCrdt<T>
where
T: CrdtNode,
{
fn node_from(value: JsonValue, id: AuthorId, path: Vec<PathSegment>) -> Result<Self, String> {
let mut crdt = LwwRegisterCrdt::new(id, path);
crdt.set(value);
Ok(crdt)
}
}
impl<T> CrdtNodeFromValue for ListCrdt<T>
where
T: CrdtNode,
{
fn node_from(value: JsonValue, id: AuthorId, path: Vec<PathSegment>) -> Result<Self, String> {
if let JsonValue::Array(arr) = value {
let mut crdt = ListCrdt::new(id, path);
let result: Result<(), String> =
arr.into_iter().enumerate().try_for_each(|(i, val)| {
crdt.insert_idx(i, val);
Ok(())
});
result?;
Ok(crdt)
} else {
Err(format!("failed to convert {value:?} -> ListCRDT<T>"))
}
}
}
#[cfg(test)]
mod test {
use serde_json::json;
use crate::{
json_crdt::{add_crdt_fields, BaseCrdt, CrdtNode, IntoCrdtNode, JsonValue, OpState},
keypair::make_keypair,
list_crdt::ListCrdt,
lww_crdt::LwwRegisterCrdt,
op::{print_path, ROOT_ID},
};
#[test]
fn test_derive_basic() {
#[add_crdt_fields]
#[derive(Clone, CrdtNode)]
struct Player {
x: LwwRegisterCrdt<f64>,
y: LwwRegisterCrdt<f64>,
}
let keypair = make_keypair();
let crdt = BaseCrdt::<Player>::new(&keypair);
assert_eq!(print_path(crdt.doc.x.path), "x");
assert_eq!(print_path(crdt.doc.y.path), "y");
}
#[test]
fn test_derive_nested() {
#[add_crdt_fields]
#[derive(Clone, CrdtNode)]
struct Position {
x: LwwRegisterCrdt<f64>,
y: LwwRegisterCrdt<f64>,
}
#[add_crdt_fields]
#[derive(Clone, CrdtNode)]
struct Player {
pos: Position,
balance: LwwRegisterCrdt<f64>,
messages: ListCrdt<String>,
}
let keypair = make_keypair();
let crdt = BaseCrdt::<Player>::new(&keypair);
assert_eq!(print_path(crdt.doc.pos.x.path), "pos.x");
assert_eq!(print_path(crdt.doc.pos.y.path), "pos.y");
assert_eq!(print_path(crdt.doc.balance.path), "balance");
assert_eq!(print_path(crdt.doc.messages.path), "messages");
}
#[test]
fn test_lww_ops() {
#[add_crdt_fields]
#[derive(Clone, CrdtNode)]
struct Test {
a: LwwRegisterCrdt<f64>,
b: LwwRegisterCrdt<bool>,
c: LwwRegisterCrdt<String>,
}
let kp1 = make_keypair();
let kp2 = make_keypair();
let mut base1 = BaseCrdt::<Test>::new(&kp1);
let mut base2 = BaseCrdt::<Test>::new(&kp2);
let _1_a_1 = base1.doc.a.set(3.0).sign(&kp1);
let _1_b_1 = base1.doc.b.set(true).sign(&kp1);
let _2_a_1 = base2.doc.a.set(1.5).sign(&kp2);
let _2_a_2 = base2.doc.a.set(2.13).sign(&kp2);
let _2_c_1 = base2.doc.c.set("abc".to_string()).sign(&kp2);
assert_eq!(base1.doc.a.view(), json!(3.0).into());
assert_eq!(base2.doc.a.view(), json!(2.13).into());
assert_eq!(base1.doc.b.view(), json!(true).into());
assert_eq!(base2.doc.c.view(), json!("abc").into());
assert_eq!(
base1.doc.view().into_json(),
json!({
"a": 3.0,
"b": true,
"c": null,
})
);
assert_eq!(
base2.doc.view().into_json(),
json!({
"a": 2.13,
"b": null,
"c": "abc",
})
);
assert_eq!(base2.apply(_1_a_1), OpState::Ok);
assert_eq!(base2.apply(_1_b_1), OpState::Ok);
assert_eq!(base1.apply(_2_a_1), OpState::Ok);
assert_eq!(base1.apply(_2_a_2), OpState::Ok);
assert_eq!(base1.apply(_2_c_1), OpState::Ok);
assert_eq!(base1.doc.view().into_json(), base2.doc.view().into_json());
assert_eq!(
base1.doc.view().into_json(),
json!({
"a": 2.13,
"b": true,
"c": "abc"
})
)
}
#[test]
fn test_vec_and_map_ops() {
#[add_crdt_fields]
#[derive(Clone, CrdtNode)]
struct Test {
a: ListCrdt<String>,
}
let kp1 = make_keypair();
let kp2 = make_keypair();
let mut base1 = BaseCrdt::<Test>::new(&kp1);
let mut base2 = BaseCrdt::<Test>::new(&kp2);
let _1a = base1.doc.a.insert(ROOT_ID, "a".to_string()).sign(&kp1);
let _1b = base1.doc.a.insert(_1a.id(), "b".to_string()).sign(&kp1);
let _2c = base2.doc.a.insert(ROOT_ID, "c".to_string()).sign(&kp2);
let _2d = base2.doc.a.insert(_1b.id(), "d".to_string()).sign(&kp2);
assert_eq!(
base1.doc.view().into_json(),
json!({
"a": ["a", "b"],
})
);
// as _1b hasn't been delivered to base2 yet
assert_eq!(
base2.doc.view().into_json(),
json!({
"a": ["c"],
})
);
assert_eq!(base2.apply(_1b), OpState::MissingCausalDependencies);
assert_eq!(base2.apply(_1a), OpState::Ok);
assert_eq!(base1.apply(_2d), OpState::Ok);
assert_eq!(base1.apply(_2c), OpState::Ok);
assert_eq!(base1.doc.view().into_json(), base2.doc.view().into_json());
}
#[test]
fn test_causal_field_dependency() {
#[add_crdt_fields]
#[derive(Clone, CrdtNode)]
struct Item {
name: LwwRegisterCrdt<String>,
soulbound: LwwRegisterCrdt<bool>,
}
#[add_crdt_fields]
#[derive(Clone, CrdtNode)]
struct Player {
inventory: ListCrdt<Item>,
balance: LwwRegisterCrdt<f64>,
}
let kp1 = make_keypair();
let kp2 = make_keypair();
let mut base1 = BaseCrdt::<Player>::new(&kp1);
let mut base2 = BaseCrdt::<Player>::new(&kp2);
// require balance update to happen before inventory update
let _add_money = base1.doc.balance.set(5000.0).sign(&kp1);
let _spend_money = base1
.doc
.balance
.set(3000.0)
.sign_with_dependencies(&kp1, vec![&_add_money]);
let sword: JsonValue = json!({
"name": "Sword",
"soulbound": true,
})
.into();
let _new_inventory_item = base1
.doc
.inventory
.insert_idx(0, sword)
.sign_with_dependencies(&kp1, vec![&_spend_money]);
assert_eq!(
base1.doc.view().into_json(),
json!({
"balance": 3000.0,
"inventory": [
{
"name": "Sword",
"soulbound": true
}
]
})
);
// do it completely out of order
assert_eq!(
base2.apply(_new_inventory_item),
OpState::MissingCausalDependencies
);
assert_eq!(
base2.apply(_spend_money),
OpState::MissingCausalDependencies
);
assert_eq!(base2.apply(_add_money), OpState::Ok);
assert_eq!(base1.doc.view().into_json(), base2.doc.view().into_json());
}
#[test]
fn test_2d_grid() {
#[add_crdt_fields]
#[derive(Clone, CrdtNode)]
struct Game {
grid: ListCrdt<ListCrdt<LwwRegisterCrdt<bool>>>,
}
let kp1 = make_keypair();
let kp2 = make_keypair();
let mut base1 = BaseCrdt::<Game>::new(&kp1);
let mut base2 = BaseCrdt::<Game>::new(&kp2);
// init a 2d grid
let row0: JsonValue = json!([true, false]).into();
let row1: JsonValue = json!([false, true]).into();
let construct1 = base1.doc.grid.insert_idx(0, row0).sign(&kp1);
let construct2 = base1.doc.grid.insert_idx(1, row1).sign(&kp1);
assert_eq!(base2.apply(construct1), OpState::Ok);
assert_eq!(base2.apply(construct2.clone()), OpState::Ok);
assert_eq!(base1.doc.view().into_json(), base2.doc.view().into_json());
assert_eq!(
base1.doc.view().into_json(),
json!({
"grid": [[true, false], [false, true]]
})
);
let set1 = base1.doc.grid[0][0].set(false).sign(&kp1);
let set2 = base2.doc.grid[1][1].set(false).sign(&kp2);
assert_eq!(base1.apply(set2), OpState::Ok);
assert_eq!(base2.apply(set1), OpState::Ok);
assert_eq!(base1.doc.view().into_json(), base2.doc.view().into_json());
assert_eq!(
base1.doc.view().into_json(),
json!({
"grid": [[false, false], [false, false]]
})
);
let topright = base1.doc.grid[0].id_at(1).unwrap();
base1.doc.grid[0].delete(topright);
assert_eq!(
base1.doc.view().into_json(),
json!({
"grid": [[false], [false, false]]
})
);
base1.doc.grid.delete(construct2.id());
assert_eq!(
base1.doc.view().into_json(),
json!({
"grid": [[false]]
})
);
}
#[test]
fn test_arb_json() {
#[add_crdt_fields]
#[derive(Clone, CrdtNode)]
struct Test {
reg: LwwRegisterCrdt<JsonValue>,
}
let kp1 = make_keypair();
let mut base1 = BaseCrdt::<Test>::new(&kp1);
let base_val: JsonValue = json!({
"a": true,
"b": "asdf",
"c": {
"d": [],
"e": [ false ]
}
})
.into();
base1.doc.reg.set(base_val).sign(&kp1);
assert_eq!(
base1.doc.view().into_json(),
json!({
"reg": {
"a": true,
"b": "asdf",
"c": {
"d": [],
"e": [ false ]
}
}
})
);
}
#[test]
fn test_wrong_json_types() {
#[add_crdt_fields]
#[derive(Clone, CrdtNode)]
struct Nested {
list: ListCrdt<f64>,
}
#[add_crdt_fields]
#[derive(Clone, CrdtNode)]
struct Test {
reg: LwwRegisterCrdt<bool>,
strct: ListCrdt<Nested>,
}
let key = make_keypair();
let mut crdt = BaseCrdt::<Test>::new(&key);
// wrong type should not go through
crdt.doc.reg.set(32);
assert_eq!(crdt.doc.reg.view(), json!(null).into());
crdt.doc.reg.set(true);
assert_eq!(crdt.doc.reg.view(), json!(true).into());
// set nested
let mut list_view: JsonValue = crdt.doc.strct.view().into();
assert_eq!(list_view, json!([]).into());
// only keeps actual numbers
let list: JsonValue = json!({"list": [0, 123, -0.45, "char", []]}).into();
crdt.doc.strct.insert_idx(0, list);
list_view = crdt.doc.strct.view().into();
assert_eq!(list_view, json!([{ "list": [0, 123, -0.45]}]).into());
}
}